If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+48Y+6
We move all terms to the left:
-(-16Y^2+48Y+6)=0
We get rid of parentheses
16Y^2-48Y-6=0
a = 16; b = -48; c = -6;
Δ = b2-4ac
Δ = -482-4·16·(-6)
Δ = 2688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2688}=\sqrt{64*42}=\sqrt{64}*\sqrt{42}=8\sqrt{42}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-8\sqrt{42}}{2*16}=\frac{48-8\sqrt{42}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+8\sqrt{42}}{2*16}=\frac{48+8\sqrt{42}}{32} $
| 4^(3x)-2^(3x-2)=-1/64 | | X=50-1/2x | | 64=5u-11 | | 7x=20-3x^2 | | 4.3x+7=4.5x-9 | | 4+5x-x=12 | | 4x^2-12x-21=0 | | -5x+3^x=0 | | N-4=n(n2) | | 10-x+2x=19 | | 1/10h-4=0 | | 46/5=2/3x+3x+17 | | 3x+1=-(x+9) | | -70=-x+6x-10 | | ∑n=13(17n−25) | | 1/2(4x-8)=1/3(9x+12) | | 7x-1-4x-6=7 | | -7x+10+3x=8 | | 3(2n-1)=2(5n-4) | | 8^a=60 | | -3/4+5x=17/4 | | 1/49=7^x | | 5n-7=3n+4 | | 25^2x=(1/125)^x+1 | | x-3+2x-5=5 | | 24/6=n/12 | | 4x/3+1=X+5 | | 15x/2+3x=5 | | 24/6=n12/ | | 24/6=n12 | | F(x)=25X^2+175 | | F(x)=25^2+175 |